Viscous Flows of Incompressible Fluids V. Exact Solutions A. Couette Flow B. Poiseuille Flow C. Stokes’ First Problem D. Other Exact Solutions VI. Boundary Layers A. Boundary Layer Approximation B. Blasius Solution C. Boundary Layer Thicknesses D. Response of a Bou/Layer to Pressure Gradients E. Falkner-Skan Flows F. Approximate Boundary Layer Methods G. Thwaites’ Method H. Transition to Turbulence & Linear Stability Theory I. Turbulent Flow & Turbulence Modeling VII. Low-Reynolds-Number Solutions A. Stokes Equations B. Uniform Flow over a Sphere C. Uniform Flow over a Cylinder | Ideal Fluid Flow III. Two-dimensional Potential Flow A. Velocity Potential B. Stream Function C. Boundary Conditions D. Complex Potential E. Review of Complex Variables F. Complex Velocity G. Basic Flows H. Flows in Sectors and Around Corners I. Method of Images & the Milne-Thomson Circle Theorem J. Circular Cylinder with Circulation K. Blasius Integral Laws L. Conformal Mapping M. Kutta Condition N. Schwarz-Christoffel Transformation IV. Three-dimensional Potential Flow A. Velocity Potential and Stream Function for Axisymmetric Flows B. Basic Flows C. Butler’s Sphere Theorem D. D’Alembert’s Paradox E. Apparent Mass (Added Mass) F. Non-Axisymmetric Flows | Governing Equations I. Basic Conservation Laws A. Introduction B. Review of Vector Analysis and Tensor Index Notation C. Conservation of Mass D. Conservation of Momentum E. Conservation of Energy F. Constitutive Relations G. Summary of Governing Equations H. Nondimensionalization II. Flow Kinematics, Vortex Dynamics, and Alternate Forms of the Governing Equations A. Flow Lines B. Circulation C. Vortex Lines D. Helmholtz’s Vorticity Theorems E. Kelvin’s Theorem F. Euler Equations G. Bernoulli’s Equation H. Euler n-Equation I. Vorticity Equation J. Inviscid Motion of Vortex Lines K. Equations of Motion in Non-Inertial Reference Frames |